

Available online at www.sciencedirect.com

Journal of Chromatography A, 1043 (2004) 27-32

JOURNAL OF CHROMATOGRAPHY A

www.elsevier.com/locate/chroma

Evaluation of an embedded polar C₄ phase for hydrophobic protein analysis by reversed-phase liquid chromatography

T. Hamada*, H. Tanaka, H. Izumine, M. Ohira

GL Sciences Inc., 5-3 Nagasone, Okajima, Fukushima 960-8201, Japan

Available online 3 March 2004

Abstract

A C_4 column (InertsilWP300 C_4) was developed for a protein analysis in reversed-phase chromatography. Polar groups were embedded on this phase. And this column was evaluated with low concentration of trifluoroacetic acid (TFA) and formic acid. Test C_4 phases that controlled carbon loading and commercially available columns were compared with this embedded C_4 column. The test column with higher carbon loading showed good separations of proteins at low concentrations of TFA, although hydrophobic proteins were broadened. On the other hand, embedded polar C_4 packings showed ideal retention behavior for proteins, which is independent of ion-pairing effects of additives in mobile phase. The reason was concluded to be the shielding effects of polar groups on the sorbents, which reduce silanophilic interactions with polar groups of proteins.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Stationary phases, LC; Mobile phase composition; Proteins

1. Introduction

Proteins consist of several kinds of amino acids and have large molecular sizes. The structural features give undesirable adsorption that makes peak tailing and broadening in reversed-phase separations on silica-based sorbents, and it leads to unsatisfactory resolution or low recovery. It's mainly because the silanol groups are acidic and this ionic interaction results in an ion exchange retention mechanism. The problems increase with the size and/or the hydrophobicity of a protein because of the numerous interactions. Therefore, the silica-based sorbents used in reversed-phase separations of proteins demand high coverage on the surface and high inertness against polar groups.

Various types of sorbents: C_2 (ethyl), C_4 (butyl), C_8 (octyl), C_{18} (octadecyl), cyanopropyl and phenyl groups are available for separations of proteins. It is known that long-chain phases like C_8 or C_{18} can cause undesirable peak tailing or lower recovery of large proteins due to the high hydrophobicity. Packings with shorter alkyl chain length such as C_4 phase, therefore, are favorable for hydrophobic proteins, because of the faster kinetic desorption between proteins and stationary phase [1]. The effects of polar groups in stationary phase on the analysis of hydrophobic peptides were reported by Zhou and Hodges [2].

On the other hand, embedded polar phases have become popular in the past 10 years [3]. But the phases have not been investigated enough for reversed-phase chromatography of proteins, yet. The characteristics of these phases are significantly different from traditional alkyl bonded phases concerned with chemical composition and chromatographic behavior. Therefore, this phase is expected to be useful for protein applications.

In recent years, reversed-phase chromatography coupled to electrospray mass spectrometry has become a valuable tool for determination and structure analysis of peptides and proteins. Unfortunately, trifluoroacetic acid (TFA)containing mobile phase often obstructs high sensitive determinations due to its signal suppression [4,5]. However, many applications of reversed-phase chromatography for hydrophobic proteins have been achieved in the presence of 0.1% TFA, which overcomes peak tailing and broadening.

We have developed new reversed-phase column for hydrophobic proteins. The main feature is polar groups between the C_4 chain and the silica surface for decreasing the contribution of silanophilic interactions.

In this study, separations of proteins are investigated with the embedded polar C_4 phase at low concentration of TFA or non ion-pairing additives in mobile phase.

^{*} Corresponding author. Fax: +81-24-533-2314.

E-mail address: hamada@gls.co.jp (T. Hamada).

^{0021-9673/\$ -} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.chroma.2004.01.018

Table 1								
Physical properties	of the	silica-gels	used in	this	test	for	column	making

Particle size ^a (µm)	Surface area ^b	Pore	Pore volume ^b	Metal impur	l impurity level ^c (ppm)				
	(m^2/g)	diameter ^o (A)	(ml/g)	Fe	Al	Ca	Ti		
5	150	300	1.05	0.9	N.D.	0.7	N.D.		

^a By laser scattering method and centrifugal sedimentation.

^b By nitrogen adsorption method.

^c By atomic adsorption spectrometry.

Table 2Specification of columns used in this study

Column	Serial number	Manufacturer	Particle size (µm)	Carbon load (%, w/w)	Bonded phase	Endcapping
Embedded polar C ₄		GL Sciences	5	3.2	Embeded polar C ₄	Not endcapped
300C ₄ -T001			5	4.3	C4	Not endcapped
300C ₄ -T002			5	3.0	C_4	Not endcapped
300C ₄ -T003			5	2.3	C_4	Not endcapped
Zorbax 300SB-C ₃	USKD001444	Agilent Technologies	5	1.1	C ₃	Not specified
Protein C ₄	E000518-10-1	Vydac	5	Not specified	C_4	Not specified
YMC-pack protein-RP	041592258(W)	YMC	5	Not specified	Not specified	Not specified

The column size was $150 \text{ mm} \times 4.6 \text{ mm}$ i.d.

2. Experimental

2.1. Apparatus

The HPLC gradient system consisted of two PU-614 pumps, a CO-630 column oven, a UV-620 variablewavelength UV detector, a AS-640 auto-injector, and a DMC-675 dynamic mixer (all from GL Sciences, Tokyo, Japan).

2.2. HPLC columns

Table 1 showed physical properties of the silica gels used in this study. The metal impurities, which play a role in enhancing the acidity of the residual silanol groups, lead to undesirable peak shape on analysis of chelating compounds (including peptides and proteins) because of irreversible interactions with hydrophilic groups of the solute [6–8].

Test columns with various carbon loading, embedded polar phase and commercially available C_4 columns are summarized in Table 2. For embedded polar phase, InertsilWP300 C_4 (GL Sciences, Tokyo, Japan) was used. This column was developed for protein analysis with 300 Å wide pore silica gel.

2.3. Reagents

HPLC-grade acetonitrile (Kishida, Osaka, Japan) and water (Milli-Q system, Millipore, Bedford, MA, USA) were used in the preparation of the mobile phases. Trifluoroacetic acid and Formic acid (Kishida) were used as additives to the mobile phases. Protein samples (molecular mass, isoelectric point): insulin (6000, 5.7), cytochrome c

Table 3 Comparison of protein retention times on embedded polar C_4 and test columns

Number ^a	Protein	Embedded polar C ₄			300C ₄ -T003			300C ₄ -T002			300C ₄ -T001		
		0.1% TFA	0.05% TFA	0.02% TFA	0.1% TFA	0.05% TFA	0.02% TFA	0.1%T FA	0.05% TFA	0.02% TFA	0.1% TFA	0.05% TFA	0.02% TFA
1	Insulin	11.5	10.5	9.3	12.8	12.1	11.6	12.4	11.6	10.8	11.7	10.9	10.1
2	Cytochrome c	12.1	10.5	8.6	14.2	13.1	12.0	13.6	12.3	11.0	12.7	11.3	10.1
3	BSA	14.9	13.6	12.5	17.3	16.5	16.0	16.7	15.9	15.1	15.7	14.4	14.1
4	Myoglobin	17.6	16.1	14.3	20.9	19.6	18.3	20.4	18.9	17.4	16.1	16.9	15.6
5	Creatine amidinohydrolase	20.2	18.6	16.8	23.5	22.3	21.1	22.6	21.1	19.7	21.0	19.5	18.4
6	Ovalbumin	21.8	20.3	17.8	26.7	25.3	24.1	25.1	23.5	22.2	23.1	21.8	20.5
7	Creatinine amidohydrolase	23.2	21.9	18.7	28.7	27.3	26.2	27.0	25.6	24.1	24.2	22.9	21.8

The data were obtained at the same conditions as Fig. 1.

^a Peak numbers denotes proteins shown in Fig. 1.

Fig. 1. Chromatograms of test mixture of proteins obtained with embedded polar C₄ and test columns at different TFA concentrations in mobile phase. Conditions: eluent A, water + acid; eluent B, acetonitrile–water (90:10, v/v) + acid; gradient, 20–60% B in 25 min; flow-rate, 1.0 ml/min; detection, UV at 280 nm; column temperature, 30 °C; and injected volume, 5 μ l. Peaks: 1 = insulin (0.1 mg/ml), 2 = cytochrome c (0.1 mg/ml), 3 = BSA (0.2 mg/ml), 4 = myoglobin (0.2 mg/ml), 5 = creatine amidinohydrolase (0.1 mg/ml), 6 = ovalbumin (0.2 mg/ml), and 7 = creatinine amidohydrolase (0.1 mg/ml).

Fig. 2. Chromatograms of ferritin sample with embedded polar C₄ and test columns at various TFA concentrations. Conditions: eluent A, water + acid; eluent B, acetonitrile–water (90:10, v/v) + acid; gradient, 20–80% B in 20 min; flow-rate, 1.0 ml/min; detection, UV at 280 nm; column temperature, 30° C; and injected volume, 5μ l. Peaks: 1 = cytochrome c (0.15 mg/ml), 2 = BSA (0.3 mg/ml), and 3 = ferritin (1.0 mg/ml).

Table 4
Comparison of protein retention times on embedded polar C_4 and commercially available columns

Number ^a Protein		Embedded polar C ₄			Zorbax 300SB-C ₃			Protein C ₄			YMC-pack protein-RP		
		0.1% TFA	0.05% TFA	0.02% TFA	0.1% TFA	0.05% TFA	0.02% TFA	0.1% TFA	0.05% TFA	0.02% TFA	0.1% TFA	0.05% TFA	0.02% TFA
1	Insulin	11.5	10.5	9.3	11.5	10.6	9.7	11.9	11.5	12.1	12.8	12.4	12.9
2	Cytochrome c	12.1	10.5	8.6	13.1	11.6	10.0	13.6	12.8	14.0	13.8	12.5	12.6
3	BSA	14.9	13.6	12.5	16.3	15.2	14.4	17.2	16.5	17.7	17.1	15.9	16.6
4	Myoglobin	17.6	16.1	14.3	19.0	17.3	15.3	20.2	19.3	20.7	19.4	18.3	18.6
5	Creatine	20.2	18.6	16.8	21.6	20.1	Not	22.7	21.9	Not	Not	Not	Not
	amidinohydrolase						specified			specified	specified	specified	specified
6	Ovalbumin	21.8	20.3	17.8	24.2	22.6	20.8	25.5	24.7	25.3	22.5	21.3	22.4
7	Creatinine	23.2	21.9	18.7	25.7	Not	Not	26.9	26.1	Not	Not	Not	Not
	amidohydrolase					specified	specified			specified	specified	specified	specified

The data were obtained at the same conditions as Fig. 4.

^a Peak numbers denotes proteins shown in Fig. 4.

(12,000, 9.0), bovine serum albumin (BSA) (66,000, 4.7), myoglobin (17,000, 8.1), ovalbumin (45,000, 4.6), and ferritin (440,000, 4.4) were from Sigma–Aldrich (St. Louis, MO, USA). Creatine amidinohydrolase (Cdi) (M_r 100,000) and creatinine amidohydrolase (Cdo) (175,000) were from Funakoshi (Tokyo, Japan).

2.4. Chromatographic conditions

Chromatographic conditions were described in each figure.

3. Results and discussion

3.1. Effects of TFA in mobile phase

The chromatograms of test mixture shown in Fig. 1 were obtained with embedded polar C_4 phase and test columns.

A phase with higher carbon loading shows longer retention of proteins, in general. However, embedded polar C_4 phase, which has middle carbon loading, retained proteins shorter than other normal C_4 phases as shown in Table 3. This is because the polar groups on the stationary phase make faster kinetic desorption of the proteins.

In the presence of 0.1% TFA, each column eluted proteins with good peak shape. At low TFA concentration, the peak shape of BSA on normal C₄ phases clearly showed the differences from embedded C₄ phase. When the concentrations of TFA were reduced to 0.05 and 0.02%, BSA was tailing on normal C₄ phases. The tailing of BSA was remarkably bad on the phases with lower carbon loading (300C₄-T001 and 300C₄-T002), and it seemed to be caused by the lower coverage of silanol groups. Embedded polar C₄ phases, which have middle carbon loading, eluted BSA and other proteins with good peak shape. It is suggested that the polar groups decrease the contribution of silanophilic interactions. Elution behaviors of hydrophobic proteins such as Cdi, ovalbumin, and Cdo on embedded polar C₄ phase were ideal at any conditions of TFA.

Fig. 3. Chromatograms of test mixture consisting of acetophenone, benzene, toluene, naphthalene. Conditions: eluent, acetonitrile–water (50:50, v/v); flow-rate, 1.0 ml/min; detection, UV at 254 nm; column temperature, $40 \,^{\circ}$ C; and injected volume, 1 µl. Peaks: 1 = acetophenone (0.1 µl/ml), 2 = benzene (14 µl/ml), 3 = toluene (10 µl/ml), and 4 = naphthalene (1 mg/ml).

Fig. 4. Chromatograms of test mixture of proteins obtained with embedded polar C₄ phase and commercially available columns at various TFA concentrations. Conditions: eluent A, water + acid; eluent B, acetonitrile–water (90:10, v/v) + acid; gradient, 20–60% B in 25 min; flow-rate, 1.0 ml/min; detection, UV at 280 nm; column temperature, 30 °C; and injected volume, 5 μ l. Peaks: 1 = insulin (0.1 mg/ml), 2 = cytochrome c (0.1 mg/ml), 3 = BSA (0.2 mg/ml), 4 = myoglobin (0.2 mg/ml), 5 = creatine amidinohydrolase (0.1 mg/ml), 6 = ovalbumin (0.2 mg/ml), and 7 = creatinine amidohydrolase (0.1 mg/ml).

Fig. 2 shows the chromatograms of ferritin sample separated on embedded polar C₄ phase and test columns. Ferritin $(M_r = 440,000)$ is one of the proteins which was not eluted with ideal behavior in the report of Burton and Snyder [9]. The size and/or the hydrophobicity of a protein have influence on undesirable adsorption because of stout interactions to stationary phase. Ferritin seemed to be suitable for evaluations of stationary phase, because the chromatograms were different between columns and strongly influenced by elution conditions.

Higher concentrations of TFA in mobile phase make hydrophobicity of proteins larger, because the protonated basic groups become uncharged by forming ion-pair with TFA. Therefore, higher carbon loading columns ($300C_4$ -T002 and $300C_4$ -003) could not elute ferritin with ideal peak shape as compared with $300C_4$ -T001 at 0.1% TFA in mobile phase. On the other hand, lower concentration of TFA accelerated silanophilic interactions with amino groups of proteins. Therefore, the peak shape became broad at 0.02% on the low carbon loading column ($300C_4$ -T001).

Embedded polar C_4 phase performed well at any concentration of TFA. The retention behavior of proteins was independent of the ion-pairing effects of TFA. It is suggested that the polar groups embedded on the sorbents have shielding effects, which reduce silanophilic interactions with polar groups of proteins.

3.2. Separation of proteins on embedded polar C_4 and commercially available columns

The separation of test mixture, consisting of acetophenone, benzene, toluene and naphthalene, was performed on each column for comparing their hydrophobicity in Fig. 3. Embedded polar C_4 phase showed longer retention of naphthalene, and it was expected that the phase has higher hydrophobicity than other commercially available columns. Proteins, however, were retained longer on commercially available columns than on embedded polar C_4 phase as shown in Table 4. Silanophilic interactions would contribute to the retention process of proteins on commercially available columns. At low TFA concentrations, proteins were eluted with non-ideal peak shape on commercially avail-

Table 5

Comparison of proteins recovery at 0.1% TFA and 0.2% formic acid Embedded polar C_4

Protein	Recovery (%)							
	0.1% TFA	0.2% Formic acid						
Cytochrome c	93.1	92.6						
BSA	96.0	91.0						
Ovalbumin	74.1	80.1						

The data were obtained at the same conditions as Fig. 4 (0.1% TFA) and Fig. 5 (0.2% formic acid).

Fig. 5. Chromatograms of test mixture of proteins with embedded polar C₄ phase and commercially available columns at 0.2% formic acid. Conditions: eluent A, 0.2% formic acid; eluent B, acetonitrile–water (90:10, v/v) + 0.2% formic acid; gradient, 20–80% B in 20 min; flow-rate, 1.0 ml/min; detection, UV at 280 nm; column temperature, 30 °C; and injected volume, 5 μ l. Peaks: 1 = insulin (0.1 mg/ml), 2 = cytochrome c (0.1 mg/ml), 3 = BSA (0.2 mg/ml), 4 = myoglobin (0.2 mg/ml), 5 = creatine amidinohydrolase (0.1 mg/ml), 6 = ovalbumin (0.2 mg/ml), and 7 = creatinine amidohydrolase (0.1 mg/ml).

able columns due to less ion-pairing effects as shown in Fig. 4.

The chromatograms of test mixture shown in Fig. 5 were obtained with embedded polar C_4 phase and commercially available columns in the presence of 0.2% formic acid in mobile phase. Many peaks were tailing or not eluted on commercially available columns. The test mixtures were well separated with good peak shape on embedded polar C_4

phase. These chromatograms demonstrated the good shielding effects of embedded polar groups, which reduce undesirable interactions on the retention process.

3.3. Recovery of proteins at 0.1% TFA and 0.2% formic acid

Table 5 shows the recovery of proteins with embedded polar C₄ phase at the same conditions as Fig. 4 (0.1% TFA) and Fig. 5 (0.2% formic acid). Separations of cytochrome c, BSA, and myoglobin with formic acid were achieved with conventional C₁₈ columns by Garcia et al. [10]. Poor recoveries and resolutions of the proteins were indicated in the report. Satisfactory recoveries of cytochrome c, BSA, and ovalbumin were obtained on embedded polar C₄ phase both in 0.1% TFA and 0.2% formic acid. These results were led from both the shielding effects by polar groups and the faster kinetic desorption between proteins and short-chain phases.

4. Conclusions

Embedded polar C_4 phase was evaluated at low concentrations of TFA and formic acid. This phase showed good performances in elution behaviors and recoveries of proteins at 0.2% formic acid in mobile phase. Poor recovery is a problem when formic acid was used in LC–MS detection. Therefore, this phase is expected for determinations on protein analysis.

References

- [1] D.R. Wu, H.C. Greenblatt, J. Chromatogr. A 702 (1988) 157.
- [2] N.E. Zhou, R.S. Hodges, J. Chromatogr. 548 (1991) 179.
- [3] R.E. Majors, M. Przybyciel, LC-GC North Am. 20 (2002) 586.
- [4] F. Klink, LC-GC Eur. 6 (2000) 396.
- [5] A. Apffel, S. Fischer, F.E. Kuhlmann, J. Chromatogr. A 712 (1995) 177.
- [6] J. Nawrocki, B. Buszewski, J. Chromatogr. 611 (1988) 1.
- [7] P.C. Sadek, C.J. Koester, L.D. Browers, J. Chromatogr. Sci. 25 (1987) 489.
- [8] M.T.W. Hearn, B. Grego, J. Chromatogr. 255 (1983) 125.
- [9] W.G. Burton, L.R. Snyder, J. Chromatogr. 443 (1988) 363.
- [10] M.C. Garcia, H. Irth, A.C. Hogenboom, J. Chromatogr. A 957 (2002) 187.